Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 437
Filter
1.
Odovtos (En línea) ; 25(3): 82-98, Sep.-Dec. 2023. tab, graf
Article in English | LILACS, SaludCR | ID: biblio-1529071

ABSTRACT

Abstract To evaluate the microtensile bond strength (µTBS) of two resin cements to 3D printed and milled CAD/CAM resins used for provisional fixed partial dentures. Blocks (5 x 5 x 5 mm) of three 3D-printed resins (Cosmos3DTemp / Yller; Resilab3D Temp / Wilcos and SmartPrint BioTemp, / MMTech) were printed (Photon, Anycubic Technology Co.). A milled material (VitaCAD-Temp, VITA) was used as control. Half the specimens were sandblasted and the rest were untreated. Two blocks were bonded with the corresponding resin cement: PanaviaV5 (Kuraray Noritake) and RelyX Ultimate (3M Oral Care). After 24 hours, the bonded blocks were sectioned into 1 x 1 mm side sticks. Half the beams were tested for µTBS and the other half was thermocycled (5000 cycles, 30s dwell-time, 5s transfer time) before µTBS testing. A four way Generalized Linear Model (material*sandblasting*cement*aging) analysis was applied. VITA exhibited the lowest µTBS, regardless of the cement, sandblasting and thermocycling. Sandblasting significantly improved the µTBS of VIT, especially after aging, but did not improve the µTBS of 3D printed resins. Sandblasting was not beneficial for 3D printed resins, although is crucial for adhesive cementation of milled temporary resins. Airborne particle abrasion affects the integrity of 3D-printed resins, without producing a benefit on the microtensile bond strength of these materials. However, sandblasting is crucial to achieve a high bond strength on milled temporary resins.


Resumen Evaluar la resistencia adhesiva en microtracción (µTBS) de dos cementos resinosos a resinas CAD/CAM impresas y fresadas indicadas para restauraciones provisionales. Bloques (5 x 5 x 5mm) de tres resinas impresas (Cosmos3DTemp / Yller; Resilab3D Temp / Wilcos and SmartPrint BioTemp, / MMTech) y una resina fresada (VitaCAD-Temp, VITA) fueron fabricados. La mitad de los especímenes fueron arenados y el resto no recibió tratamiento mecánico. Dos bloques con condiciones de tratamiento iguales fueron cementados con cemento resinoso (PanaviaV5 / Kuraray Noritake y RelyX Ultimate / 3M Oral Care). Después de 24 horas los bloques fueron seccionados en palitos de 1 mm² de área. En la mitad de los especímenes se midió la TBS inmediatamente y el resto fue termociclado (5000 ciclos, 30s remojo, 5s transferencia) antes de la prueba de TBS. Se aplica un análisis estadístico por Modelo Linear General con 4 factores (material*arenado*cemento*termociclado). La resina VITA presentó la menor µTBS, independientemente del cemento usado, el arenado y el termociclado. Sin embargo, el arenado aumentó la µTBS de VIT, especialmente después del termociclado. Por otro lado, el arenado no resultó en un aumento significativo de la µTBS de las resinas impresas. El arenado no fue beneficiosos para las resinas impresas, aunque es un paso crucial para la cementación adhesive de las resinas fresadas. El arenado afecta la integridad de las capas de las resinas impresas, sin generar un beneficio en la TBS.


Subject(s)
Computer-Aided Design/instrumentation , Resin Cements/therapeutic use , Dental Cementum , Printing, Three-Dimensional/instrumentation
2.
Rev. Estomat ; 31(2): 1-8, 20230929.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1511309

ABSTRACT

Antecedentes: El conocimiento anatómico de la cámara pulpar y del sistema de conductos radiculareses fundamental para el correcto diagnóstico y planificación del tratamiento en endodoncia. Las herramientas pedagógicasdirigidasa los estudiantes de odontologíacomo apoyo en los procesos formativosde la asignatura de endodoncia favorecen la apropiación del conocimiento e identificación de las variantes morfológicas del sistema de conductos radiculares, que permiten al estudiantela integración del conocimiento. Objetivo:Identificar mediante una revisión de la literatura las estrategias pedagógicas que se utilizan para la enseñanza de morfología del sistema de conductos radiculares en endodoncia. Materiales y métodos: Se realizó una búsqueda bibliográfica de estudios originales en las bases de datos Medline (Pubmed), SciELO, Lilacs, Medline (Ovid), Web of science, Scopus, Embase, Google académico, eligiendo estudios publicadosa partir del año 2010 al 2022, para la selección de los artículos definitivos se seleccionaron estudios concernientes a procesos pedagógicos en endodoncia, excluyendo así otros tipos de enfoques en el área de odontología. Resultados: Se identificaron un total de 63 referencias, los cuales fueron analizados y seleccionados16, siendo excluidos 47 por no cumplir los criterios de inclusión. Conclusión: El uso de herramientas pedagógicas virtuales, didácticas y tecnológicas propician un efecto positivo en el estudiante de pregrado de odontología durante el aprendizaje de anatomía de sistemas de conductos radiculares que aumentan la confianza y seguridad al momento de realizar un tratamiento endodóntico en pacientes


Background: Anatomical knowledge of the pulp chamber and the root canal system is essential for correct diagnosis and treatment planning in endodontics. The pedagogical tools aimed at dental students as support in the training processes of the endodontics subject favor the appropriation of knowledge and identification of the morphological variants of the root canal system, which allow the student the integration of knowledge. Objective: To identify, through a review of the literature, the pedagogical strategies used to teach morphology of the root canal system in endodontics. Materials and methods: A bibliographic search of original studies was carried out in the Medline (Pubmed), SciELO, Lilacs, Medline (Ovid), Web of Science, Scopus, Embase, and Google academic databases, choosing studies published from 2010 to 2022. , for the selection of the definitive articles, studies concerning pedagogical processes in endodontics were selected, thus excluding other types of approaches in the area of dentistry. Results: A total of 63 references were identified, 16 of which were analyzed and selected, 47 being excluded for not meeting the inclusion criteria. Conclusion: The use of virtual, didactic and technological pedagogical tools favor a positive effect on the dentistry undergraduate student while learning the anatomy of root canal systems that increase confidence and security when performing endodontic treatment in patients.

3.
Odovtos (En línea) ; 25(2)ago. 2023.
Article in English | LILACS-Express | LILACS | ID: biblio-1448737

ABSTRACT

The objective is to determine which biopolymer has the best 3D printing characteristics and mechanical properties for the manufacture of a bioscaffold, using the fused deposition printing technique, with models generated from an STL file obtained from a Micro-CT scan taken from a bovine iliac crest bone structure. Through an experimental exploratory study, three study groups of the analyzed biopolymers were carried out with thirteen printed structures of each one. The first is made of 100% PLA. The second, 90B, we added 1g of diatom extract, and the third, 88C, differs from the previous one in that it also contains 1g of calcium phosphate. The 39 printed structures underwent a visual inspection test, which required the fabrication of a gold standard scaffold in resin, with greater detail and similarity to the scanned bone structure. Finally, the structures were subjected to a compressive force (N) to obtain the modulus of elasticity (MPa) and compressive strength (MPa) of each one of them. A statistically significant difference (p=0.001) was obtained in the printing properties of the biomaterial 88C, compared to 90B and pure PLA and the 88C presented the best 3D printing characteristics. In addition, it also presented the best mechanical properties compared to the other groups of materials. Although the difference between these was not statistically significant (p=0.388), in the structures of the 88C biomaterial, values of compressive strength (8,84692 MPa) and modulus of elasticity (43,23615 MPa) were similar to those of cancellous bone in the jaws could be observed. Because of this result, the 88C biomaterial has the potential to be used in the manufacture of bioscaffolds in tissue engineering.


El objetivo es determinar cuál biopolímero presenta las mejores características de impresión 3D y propiedades mecánicas para la fabricación de un bioandamiaje, utilizando la técnica de impresión por deposición fundida, con modelos generados a partir de un archivo en formato STL que se obtuvo de un Micro-CT Scan de una estructura osea de cresta iliaca bovina. Mediante un estudio exploratorio, se realizaron 3 grupos de estudio con trece estructuras impresas de cada uno. El primero, se compone 100% de PLA. El segundo, 90B, se le agrega 1g de extracto de diatomea, y el tercero, 88C, se diferencia del anterior ya que contiene además, 1g de fosfato de calcio. A las 39 estructuras impresas se les realizó una prueba de inspección visual, por lo que se requirió la confección de un patrón de oro en resina, con mayor detalle y similitud a la estructura ósea escaneada. Finalmente, las estructuras fueron sometidas a una fuerza compresiva (N) para la obtención del módulo de elasticidad (MPa) y de la resistencia compresiva (MPa) de cada una de ellas. Se obtuvo una diferencia estadísticamente significativa (p=0,001) en las propiedades de impresión del biomaterial 88C, con respecto al 90B y al PLA puro, presentando las mejores características de impresión 3D. Además, obtuvo las mejores propiedades mecánicas en comparación con los otros grupos de materiales. Aunque la diferencia entre estos no fue estadísticamente significativa (p=0,388), en las estructuras del biomaterial 88C, se pudieron observar valores de resistencia compresiva (8,84692 MPa) y módulo de elasticidad (43,23615 MPa) que son semejantes a los del hueso esponjoso de los maxilares. A razón de este resultado, el biomaterial 88C cuenta con el potencial para ser utilizado en la fabricación de bioandamiajes en la ingeniería tisular.

4.
Int. j. morphol ; 41(3): 690-698, jun. 2023. ilus, tab, graf
Article in Spanish | LILACS | ID: biblio-1514320

ABSTRACT

El uso de nuevos recursos tecnológicos en la enseñanza de anatomía ha impulsado la necesidad de adaptar el modelo educativo haciéndolo más centrado en el estudiante, dinámico y participativo mediante herramientas digitales y 3D; orientando los conocimientos hacia su aplicación clínica, pero bajo un ajuste curricular que tiende a cursar menos horas presenciales en aula o laboratorio. Este trabajo describe la experiencia local de una nueva Escuela de Medicina en Chile, reportada el año 2018, además y otros trabajos de centros formadores presentados en el "SECTRA Users Meeting 2019 Estocolmo", Karolinska Institutet, Suecia. Este trabajo describe los reportes orales sobre la aplicación de nuevos recursos digitales como; la mesa de disección digital táctil SECTRA® y modelos anatómicos cadavéricos impresos en 3D Erler-Zimmer®, bases de datos sobre anatomía digital, además, su impacto en el desempeño académico, reportado por usuarios de diferentes países, tales como: Australia, Canadá, Chile, China, Colombia, Estados Unidos de Norteamérica (EUA) y Suecia. Los datos fueron recopilados y analizados a partir de la información reportada en las presentaciones orales y resúmenes entregados por los expositores. La gran mayoría de los países expositores declararon el uso combinado de recursos digitales y 3D sumados a los tradicionales para la enseñanza de anatomía. Sólo el representante de EUA declaró usar exclusivamente recursos digitales (en laboratorio y en línea), experiencia correspondiente a una joven e innovadora escuela de medicina. La mayoría de los centros docentes declaró utilizar la mesa de disección digital en una amplia proporción de sus contenidos curriculares, en asociación a plataformas tipo RIS/PACS como IDS7 portal de SECTRA o las utilizadas por el centro formador. El uso de nuevas tecnologías digitales y 3D ha ganado un importante espacio en el currículum de la enseñanza de anatomía, complementando el uso de los recursos tradicionales.


SUMMARY: The use of new technological resources in the teaching of anatomy has promoted the need to adapt the educational model, making it more student-centered, dynamic, and participatory through digital and 3D tools, directing the knowledge towards its clinical application, but under a curricular adjustment that tends to take fewer contact hours in the classroom or laboratory. This work describes the local experience of a new School of Medicine in Chile, reported in 2018, and other work from training centers presented at the "SECTRA Users Meeting 2019 Stockholm", Karolinska Institutet, Sweden. This work describes the oral reports on the application of new digital resources such as; the SECTRA® digital tactile dissection table and Erler- Zimmer® 3D printed cadaveric anatomical models, databases on digital anatomy, in addition, its impact on academic performance, reported by users from different countries, such as Australia, Canada, Chile, China, Colombia, United States of America (USA) and Sweden. The data was collected and analyzed from the information reported in the oral presentations and summaries delivered by the speakers.The vast majority of the exhibiting countries declared the combined use of digital and 3D resources added to the traditional ones for teaching anatomy. Only the representative from the USA stated that they exclusively used digital resources (in the laboratory and online), an experience corresponding to a young and innovative medical school. Most of the educational centers stated that they used the digital dissection table in a large proportion of their curricular contents, in association with RIS/PACS-type platforms such as the IDS7 SECTRA portal or those used by the training center. The use of new digital and 3D technologies has gained an important space in the anatomy teaching curriculum, complementing the use of traditional resources.


Subject(s)
Humans , Universities , Health Education/trends , Educational Technology , Printing, Three-Dimensional , Anatomy/education
5.
Article | IMSEAR | ID: sea-222444

ABSTRACT

This case report describes three cases in which periapical surgeries were carried out using a new surgical endodontic technique by using a three?dimensional (3D) printed template for guided osteotomy and root resection. In Case 1, the data obtained from preoperative CT scan and cast scan were transferred to a surgical planning software. The surgical template was printed using a 3D printer. Using the template, osteotomy and root?end resection were precisely carried out. In Case 2, after CBCT imaging, data were transferred to stereolithography and a 3D model was fabricated. With the help of the 3D model, a template was fabricated using tray material. This guided surgical template minimized the extent of osteotomy and enabled precise targeting of the apex. In Case 3, a preoperative CT scan aided in the fabrication of a surgical 3D template. The template assisted in the precise removal of the overlying cortical bone.

6.
Int. j. morphol ; 41(1): 73-78, feb. 2023. ilus
Article in English | LILACS | ID: biblio-1430533

ABSTRACT

SUMMARY: The study on cadavers, although considered fundamental in the teaching of human anatomy, is limited in several universities, mainly due to the acquisition and manipulation of cadaveric material. Throughout history, several artificial anatomical models have been used to complement the real anatomical pieces. The present study offers a new alternative: the making of three-dimensional models from Computed Tomography (3D-CT) patient image acquisition. CT images from the USP University Hospital database were used. Patients underwent examinations for reasons other than the present study and were anonymized to maintain confidentiality. The CT slices obtained in thin cross-sections (approximately 1.0 mm thick) were converted into three-dimensional images by a technique named Volume Rendering for visualization of soft tissue and bone. The reconstructions were then converted to an STL (Standard Triangle Language) model and printed through two printers (LONGER LK4 Pro® and Sethi S3®), using PLA and ABS filaments. The 3D impressions of the thigh and leg muscles obtained better visual quality, being able to readily identify the local musculature. The images of the face, heart, and head bones, although easily identifiable, although seemed to present lower quality aesthetic results. This pilot study may be one of the first to perform 3D impressions of images from CT to visualize the musculature in Brazil and may become an additional tool for teaching.


El estudio en cadáveres, a pesar de considerarse un aspecto fundamental en la enseñanza de la anatomía humana, se encuentra limitado en varias universidades, principalmente por la adquisición y manipulación de material cadavérico. A lo largo de la historia se han utilizado varios modelos anatómicos artificiales para complementar las piezas anatómicas reales. El presente estudio ofrece una nueva alternativa: la elaboración de modelos tridimensionales a partir de la adquisición de imágenes de pacientes por Tomografía Computarizada (3D-CT). Se utilizaron imágenes de TC de la base de datos del Hospital Universitario de la USP. Los pacientes se sometieron a exámenes por razones distintas al presente estudio y fueron anonimizados para mantener la confidencialidad. Los cortes de TC obtenidos en secciones transversales delgadas (aproximadamente 1,0 mm de grosor) se convirtieron en imágenes tridimensionales mediante una técnica denominada Volume Rendering para la visualización de tejido blando y hueso. Luego, las reconstrucciones se convirtieron a un modelo STL (Standard Triangle Language) y se imprimieron a través de dos impresoras (LONGER LK4 Pro® y Sethi S3®), utilizando filamentos PLA y ABS. Se obtuvo una mejor calidad visual de las impresiones 3D de los músculos del muslo y la pierna, pudiendo identificar fácilmente la musculatura local. Las imágenes de la cara, el corazón y los huesos de la cabeza, aunque fácilmente identificables, parecían presentar resultados estéticos de menor calidad. Este estudio piloto puede ser uno de los primeros en realizar impresiones 3D de imágenes de TC para visualizar la musculatura y podría ser en una herramienta adicional para la enseñanza.


Subject(s)
Humans , Tomography, X-Ray Computed , Printing, Three-Dimensional , Anatomy/education , Models, Anatomic
7.
International Journal of Surgery ; (12): 537-544,C2, 2023.
Article in Chinese | WPRIM | ID: wpr-989496

ABSTRACT

Objective:To observe the efficacy of 3D printing-assisted hematoma puncture and drainage in the treatment of hypertensive intracerebral hemorrhage and to explore the factors affecting postoperative brain dysfunction.Methods:A retrospective Case-control study was conducted to select 168 hypertensive intracerebral hemorrhage patients who were treated with 3D printing assisted hematoma puncture and drainage in the People′s Hospital of Yuechi County from January 2020 to September 2022 as the observation group, and 125 hypertensive intracerebral hemorrhage patients who were treated with CT guided hematoma puncture and drainage in the People′s Hospital of Yuechi County at the same time as the control group. The clinical efficacy of the two groups of patients was compared. According to the occurrence of postoperative brain dysfunction, the patients in the observation group were divided into normal brain function group ( n=121) and brain dysfunction group ( n=47). The clinical data of age, preoperative cerebral hernia, blood loss, ventilator-assisted ventilation, postoperative Glasgow coma index score (GCS) and postoperative complications were compared between the two groups. Multivariate Logistic regression was used to analyze the factors affecting postoperative brain dysfunction in the observation group, and a line chart model was constructed and its predictive efficiency was evaluated. The measurement data of normal distribution is expressed as mean ± standard deviation ( ± s), and independent sample t-test is used for inter group comparison. Chi-square test was used for comparison between count data groups. Results:The proportion of the drainage tube in the hematoma, hematoma clearance rate at 3 and 7 days after surgery, total effective rate of treatment, and GCS score at 1 week after surgery in the observation group were 88.69%(149/168), 54.17%(91/168), 96.43%(162/168), 92.86%(156/168), and 10.72±3.45, respectively, the control group was 75.20%(94/125), 36.80%(46/125), 81.60%(102/125), 76.80%(96/125), and 9.08±3.22, respectively, the difference between the two groups was statistically significant ( P<0.05). Advanced age ( OR=1.983, 95% CI: 1.169-2.732, P=0.017), preoperative cerebral hernia ( OR=1.532, 95% CI: 1.113-2.139, P=0.029), bleeding volume ≥ 50 mL ( OR=2.538, 95% CI: 1.802-3.347, P=0.003), postoperative GCS score 3-5 ( OR=2.874, 95% CI: 2.265-3.449, P<0.001), postoperative hypoxemia ( OR=2.251, 95% CI: 1.673-2.842, P=0.010) and postoperative chronic hydrocephalus ( OR=1.642, 95% CI: 1.214-2.021, P=0.022) were risk factors for postoperative brain dysfunction, while ventilator-assisted ventilation ( OR=0.656, 95% CI: 0.132-0.828, P=0.038) was protective factors. The internal verification of the line chart model by Bootstrap resampling method shows that the model has high differentiation, accuracy and validity. Conclusion:The application of 3D printing-assisted localization in hematoma puncture and drainage can improve the puncture condition and the hematoma clearance rate and clinical effect of patients with hypertensive intracerebral hemorrhage. Advanced age, preoperative cerebral hernia and bleeding volume are related to postoperative brain dysfunction. Clinical attention should be paid to patients with risk indicators of postoperative brain dysfunction.

8.
International Journal of Surgery ; (12): 285-288,F4, 2023.
Article in Chinese | WPRIM | ID: wpr-989448

ABSTRACT

At present, surgical treatment is the most effective method for the treatment of hepatobiliary malignant tumor. However, due to the complex anatomical structure of hepatobiliary region, accompanied by vascular variation, and with the continuous update of medical concepts, the requirements for surgery are more strict. Traditional imaging examination has reached a bottleneck in the support of surgical treatment, while 3D printing technology is compared with the former. It showed strong advantages in preoperative program planning and improving the effect of intraoperative precise resection. At the same time, it also shows great potential for medical assistance and disease treatment in the production of bioactive models, and 3D printing technology has obviously enhanced the understanding of surgery for young doctors, and medical staff can create a variety of highly practical 3D printing models under the existing conditions. In the future, it is expected to overcome the limitations of materials and technology and bring higher therapeutic benefits for the majority of patients.

9.
Journal of Medical Biomechanics ; (6): E276-E282, 2023.
Article in Chinese | WPRIM | ID: wpr-987947

ABSTRACT

Objective Aiming at the problem of significant anisotropy in the three-dimensional ( 3D) printed polyether-ether-ketone ( PEEK) bone substitutes manufactured by material extrusion technology, taking the femur, the main load-bearing long bone of the lower limb, as an example, the biomechanical properties of the femoral model under different direction in the build chamber were evaluated by the combination of finite element analysis and in-vitro mechanical experiment. Methods A left femoral model was obtained by reconstruction from CT data. The stress and displacement of the 3D printed PEEK femur with different directions in the build chamber under five physiological postures in the human gait cycle were simulated by varying the orthogonal anisotropy mechanical properties. An in-vitro mechanical experiment was conducted to investigate the safety and stability of the femur through a 3D printed PEEK femur. Results When the long axis of the femur model was perpendicular to the building platform of the 3D printer, a better mechanical property was obtained, and the maximum von Mises stress was 46. 56 MPa, which was lower than the yield stress of PEEK, while the maximum displacement was larger than that of the natural femur under same loading condition. Therefore, the 3D printed PEEK femur met the strength requirement, but the stability needs to be improved. Conclusions The long axis is recommended to be perpendicular to the building platform when the material extrusion technology was used for the substitute of the load-bearing long bone, and the effect of its anisotropy on service performance of the substitute should be carefully considered when the 3D printing technology is used for load-bearing bone substitute.

10.
Journal of Medical Biomechanics ; (6): E135-E141, 2023.
Article in Chinese | WPRIM | ID: wpr-987926

ABSTRACT

Objective To investigate the effect of different coating methods on production quality of complex and flexible silicone vascular replicas. Methods Based on models of anterior communicating artery aneurysms, several patient-specific models were made by using spray-coating method and brush-spin-coating method respectively, and two methods for making the same vascular structure were quantitatively compared in terms of thickness growth, circumferential uniformity and light transmittance. Results Brush-spin-coating method was better than spray-coating method in the thickness control and coating uniformity for fabrication of vessels with large curvature, variable diameter and straight tube, and the model had preferably light transmittance and surface smoothness. The relative deviation of thickness by brush-spin-coating method was decreased by 8. 9% , 10. 8% and 16. 9% respectively compared with spray-coating method. Conclusions At present stage, the brush-spin coating method has the advantage of thickness uniformity and light transmittance over the spray-coating method in making silicone phantoms, and it has promising application prospects in fluid mechanics field of in vitro experiment on large vessels.

11.
Journal of China Pharmaceutical University ; (6): 410-420, 2023.
Article in Chinese | WPRIM | ID: wpr-987660

ABSTRACT

@#Most drugs taste bitter and irritating, resulting in poor compliance of patients, and the bad odor affects the therapeutic effect. The successful research and development of a drug should not only conform to the five quality characteristics of effectiveness, stability, safety, uniformity and economy, but also the compliance of patients to drugs with bad odor. The development of taste masking techniques is critical for bitter drugs.This review describes the principles, advantages and drawbacks of traditional taste masking techniques, and introduces the mechanism and application of novel taste masking techniques, such as melt granulation, hot melt extrusion, 3D printing, drug complex preparation, and bitter taste inhibitors. The in vitro evaluation methods of drug taste masking effect, such as functional magnetic resonance imaging, in vitro dissolution, and electronic tongue technology, are described. And introduce in vivo evaluation methods, such as animal and human taste, in the field of taste masking effect. A new strategy of BP neural network prediction model for drug taste evaluation is proposed, with a view to providing theoretical reference for the future research on drug taste masking.

12.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 801-806, 2023.
Article in Chinese | WPRIM | ID: wpr-987082

ABSTRACT

Objective@#To evaluate the clinical efficacy of positioning guide templates for maxillary wholly impacted supernumerary teeth to provide technological solutions for clinical applications. @*Methods @#After approval by the hospital ethics committee and informed consent given by the patients. Data from 136 patients with maxillary wholly impacted supernumerary teeth from January 2016 to April 2022 were analyzed retrospectively. The patients were divided into two groups according to the usage of the positioning guide template. The experimental group included patients using the positioning guide template (71 cases), and the control group did not use the positioning guide template (65 cases). The operation time and complications were statistically analyzed to evaluate the clinical efficacy after surgery. @*Results @# All operations were successfully completed. The average operation time in the experimental group was (21.5 ± 3.4) min, significantly shorter than that in the control group (27.2 ± 4.9) min. There were statistically significant differences between the experimental and control groups (t = 7.599, P<0.001). One week after the operation, there were no complications in the experimental group, and there were 2 cases of adjacent tooth injury and 3 cases of gingival numbness in the control group.@* Conclusion @# A digital positioning guide template can effectively shorten the time of maxillary wholly impacted supernumerary teeth extraction and is an effective means to assist clinical maxillary wholly impacted supernumerary teeth extraction.

13.
Journal of Southern Medical University ; (12): 783-792, 2023.
Article in Chinese | WPRIM | ID: wpr-986989

ABSTRACT

OBJECTIVE@#To prepare customized porous silicone orbital implants using embedded 3D printing and assess the effect of surface modification on the properties of the implants.@*METHODS@#The transparency, fluidity and rheological properties of the supporting media were tested to determine the optimal printing parameters of silicone. The morphological changes of silicone after modification were analyzed by scanning electron microscopy, and the hydrophilicity and hydrophobicity of silicone surface were evaluated by measuring the water contact angle. The compression modulus of porous silicone was measured using compression test. Porcine aortic endothelial cells (PAOECs) were co-cultured with porous silicone scaffolds for 1, 3 and 5 days to test the biocompatibility of silicone. The local inflammatory response to subcutaneous porous silicone implants was evaluated in rats.@*RESULTS@#The optimal printing parameters of silicone orbital implants were determined as the following: supporting medium 4% (mass ratio), printing pressure 1.0 bar and printing speed 6 mm/s. Scanning electron microscopy showed that the silicone surface was successfully modified with polydopamine and collagen, which significantly improved hydrophilicity of the silicone surface (P < 0.05) without causing significant changes in the compression modulus (P > 0.05). The modified porous silicone scaffold had no obvious cytotoxicity and obviously promoted adhesion and proliferation of PAOECs (P < 0.05). In rats bearing the subcutaneous implants, no obvious inflammation was observed in the local tissue.@*CONCLUSION@#Poprous silicone orbital implants with uniform pores can be prepared using embedded 3D printing technology, and surface modification obviously improves hydrophilicity and biocompatibility of the silicone implants for potential clinical application.


Subject(s)
Animals , Rats , Swine , Silicon , Orbital Implants , Endothelial Cells , Porosity , Silicones , Printing, Three-Dimensional
14.
Cancer Research on Prevention and Treatment ; (12): 229-235, 2023.
Article in Chinese | WPRIM | ID: wpr-986706

ABSTRACT

The anatomical site of osteosarcoma is generally complex. Hence, it is difficult to accurately remove osteosarcoma and retain important nerves and blood vessels around the tumor, as well as repair and reconstruct bone defects after osteosarcoma resection. 3D printing technology can "tailor" the "bone defect" after removing the irregular osteosarcoma to achieve a good therapeutic effect of limb reconstruction. This study reviews the application of 3D printing technology in the preoperative, intraoperative, and postoperative reconstruction of osteosarcoma and bone tissue engineering scaffolds. Thus, this study systematically analyzes the advantages and suggestions of 3D printing technology based on the characteristics of 3D printing to put forward references for the accurate treatments of osteosarcoma in the future.

15.
STOMATOLOGY ; (12): 82-87, 2023.
Article in Chinese | WPRIM | ID: wpr-965341

ABSTRACT

@#As the key to regeneration of oral and maxillofacial tissues such as bone, dental pulp and skin, vascularization has always been the focus of tissue engineering. With the development of three-dimensional (3D) printing in tissue engineering, there are increasing ways to construct vascular structures. However, to achieve the objective of highly simulating vascular structure in morphology and function and promote tissue repair, it is still a major difficulty for 3D bioprinting to construct highly precise and biologically functional simulated vascular structures. This paper summarizes new progress of 3D printing vascular structure, expounds frontier biological manufacturing technologies of vascular and vascularized structure such as suspension printing, coaxial printing, 4D printing, and so on, analyzes its advantages and disadvantages, and discusses its development prospect, in order to provide reference for the application of 3D printing blood vessels in regeneration and repair of oral and maxillofacial tissues.

16.
Journal of China Pharmaceutical University ; (6): 15-22, 2023.
Article in Chinese | WPRIM | ID: wpr-965246

ABSTRACT

@#With the rapid advancement of science and technology, the application of 3D printing technology for personalized drug manufacturing is becoming increasingly sophisticated.Compared to traditional manufacturing technology, 3D printing can easily customize preparations with specific sizes, shapes and release behaviors for personalized drug use.This review summarizes the principles of several 3D printing technologies commonly used in drug manufacturing, lists the unique advantages and application examples of 3D printing technology for pharmaceutical preparation, analyses the current research status and development trends of the global industry of drug 3D printing, and summarizes the current problems and challenges facing drug 3D printing, aiming to provide some guidance for researchers of 3D printed drugs.

17.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 381-388, 2023.
Article in Chinese | WPRIM | ID: wpr-964429

ABSTRACT

@#With the development of computer-aided surgery and rapid prototyping via 3D printing technology, digital surgery has rapidly advanced in clinical practice, especially in the field of oral and maxillofacial surgery. 3D printing technology has been applied to the functional restoration and reconstruction of the jawbone. Before surgery, a 3D digital model is constructed through software to plan the scope of the osteotomy, shape the bone graft and plan the placement of the implant. Additionally, 3D models of personalized surgical instrument guides are printed prior to surgery. With these 3D-printed models and guides, accurate excision of the jaw tumor, accurate placement of the grafted bone and precise placement of implants can be achieved during surgery. Postoperative evaluation of accuracy and function shows that 3D printing technology can aid in achieving the biomechanical goals of simultaneous implant placement in jaw reconstruction, and in combination with dental implant restoration, the technology can improve patients' postoperative occlusal and masticatory functions. Nevertheless, 3D printing technology still has limitations, such as time-consuming preparation before surgery. In the future, further development of 3D printing technology, optimization of surgical plans, and alternative biological materials are needed. Based on domestic and foreign literature and our research results, we have reviewed the process and clinical application prospects of jaw reconstruction via 3D printing technology to provide a reference for oral and maxillofacial surgeons.

18.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery ; (12): 535-541, 2023.
Article in Chinese | WPRIM | ID: wpr-982782

ABSTRACT

Objective:The nasal swell body(NSB) consists of the nasal septal cartilage, nasal bone, and swollen soft tissue, all of which are visible during endoscopic and imaging examinations. Although the function of the NSB remains uncertain, there is evidence to suggest that it plays a vital role in regulating nasal airflow and filtering inhaled air. Based on anatomical and histological evidence, it is hypothesized that the NSB is indispensable in these processes. This study aims to investigate the impact of NSB on nasal aerodynamics and the deposition of allergen particles under physiological conditions. Methods:The three-dimensional (3D) nasal models were reconstructed from computed tomography (CT) scans of the paranasal sinus and nasal cavity in 30 healthy adult volunteers from Northwest China, providing basis for the construction of models without NSB following virtual NSB-removal surgery. To analyze the distribution of airflow in the nasal cavity, nasal resistance, heating and humidification efficiency, and pollen particle deposition rate at various anatomical sites, we employed the computed fluid dynamics(CFD) method for numerical simulation and quantitative analysis. In addition, we created fully transparent segmented nasal cavity models through 3D printing, which were used to conduct bionic experiments to measure nasal resistance and allergen particle deposition. Results:①The average width and length of the NSB in healthy adults in Northwest China were (12.85±1.74) mm and (28.30±1.92) mm, respectively. ②After NSB removal, there was no significant change in total nasal resistance, and cross-sectional airflow velocity remained essentially unaltered except for a decrease in topical airflow velocity in the NSB plane. ③There was no discernible difference in the nasal heating and humidification function following the removal of the NSB; ④After NSB removal, the deposition fraction(DF) of Artemisia pollen in the nasal septum decreased, and the DFs post-and pre-NSB removal were(22.79±6.61)% vs (30.70±12.27)%, respectively; the DF in the lower airway increased, and the DFs post-and pre-NSB removal were(24.12±6.59)% vs (17.00±5.57)%, respectively. Conclusion:This study is the first to explore the effects of NSB on nasal airflow, heating and humidification, and allergen particle deposition in a healthy population. After NSB removal from the healthy nasal cavities: ①nasal airflow distribution was mildly altered while nasal resistance showed no significantly changed; ②nasal heating and humidification were not significantly changed; ③the nasal septum's ability to filter out Artemisia pollen was diminished, which could lead to increased deposition of Artemisia pollen in the lower airway.


Subject(s)
Adult , Humans , Cross-Sectional Studies , Nasal Cavity/surgery , Allergens , Pollen , Artemisia , Hydrodynamics
19.
China Journal of Orthopaedics and Traumatology ; (12): 209-215, 2023.
Article in Chinese | WPRIM | ID: wpr-970849

ABSTRACT

OBJECTIVE@#To investigate the application of 3D printing percutaneous surgical guide plate in closed reduction and cannulated screw internal fixation of femoral neck fracture.@*METHODS@#The clinical data of 12 patients with femoral neck fracture from March 2019 to March 2022 were retrospectively analyzed. Patients were divided into observation group and control group according to different operation plans, with 6 cases in each group. The observation group received percutaneous operation guide plate assisted closed reduction and hollow screw internal fixation, while the control group received closed reduction and hollow compression screw internal fixation. The operation time, intraoperative blood loss, fluoroscopy times, and Kirschner needle puncture times were compared between two groups. The location of screws were recordedon postoperative X-ray films, follow-up time, time of complete fracture healing, Harris score of hip joint and the incidence of complications were recorded on postoperative X-ray films.@*RESULTS@#The operation time of observation group (32.17±6.18) min was shorter than that of control group (53.83±7.31) min (P<0.05). The amount of intraoperative bleeding in the observation group (18.33±2.94) ml was less than that in the control group (38.17±5.56) ml(P<0.05). The times of fluoroscopy in the observation group (7.50±1.05) were less than those in the control group (21.00±4.82) (P<0.05). The number of Kirschner needle punctures (8.00±0.63) in observation group was less than that in control group (32.67±3.08) (P<0.05). The follow-up time was(12.88±0.74) months in observation group and (12.83±0.72) months in control group, there was no significant difference between two groups (P>0.05). One year after operation, Harris score of hip joint in the observation group was(82.00±4.52) points, while that in the control group was(81.00±3.41) points, there was no significant difference between two groups(P>0.05). The time of complete fracture healing in the observation group was (7.50±1.05) months, while that in the control group was (7.67±1.21) months, there was no significant difference between two groups(P>0.05). The parallelism of the screws in the observation group was (0.50±0.11) ° and (0.76±0.15) °, which were lower than that in the control group (1.57±0.31) ° and (1.87±0.21) ° (P<0.05). The screw distribution area ratio (0.13±0.02) cm2 in the observation group was higher than that in the control group (0.08±0.01) cm2 (P<0.05). No complications such as necrosis of femoral head, nonunion of fracture, shortening of femoral neck and withdrawal of internal fixation occurred in both groups.@*CONCLUSION@#The application of 3D printing percutaneous surgical guide plate improves the accuracy and safety of closed reduction and cannulated screw internal fixation for femoral neck fracture. It has the advantages of minimally invasive, reducing radiation exposure, fast and accurate, shortening the operation time and reducing intraoperative bleeding.


Subject(s)
Humans , Retrospective Studies , Treatment Outcome , Femoral Neck Fractures/surgery , Fracture Fixation, Internal , Bone Screws , Printing, Three-Dimensional
20.
Rev. odontol. UNESP (Online) ; 52: e20230006, 2023. tab, ilus
Article in English | LILACS, BBO | ID: biblio-1442091

ABSTRACT

Introduction: with the technological advance in dentistry, light-polymerized three-dimensional (3D) printing resins had become an alternative for the manufacture of occlusal splint splints. Objective: the present study aimed to analyze the flexural strength of a resin for 3D printing compared to conventional acrylic resins (chemically activated and thermally activated), under the influence of thermocycling. Material and method: 60 specimens were made, which were distributed in six experimental groups (n = 10), according to the resin employed (chemically activated acrylic resin, thermally activated acrylic resin and 3D printing resin) and the treatment received (control and thermocycling). The specimens were submitted to flexural strength by the three-point flexural test. Result: data analysis showed that the material factor (<0.0001) and the thermocycling factor (p = 0.0096) influenced flexural strength, however, the interaction between the two factors did not (p = 0.9728). Conclusion: it was concluded that 3D printing resins presented the lowest flexural resistance to acrylic resins, especially when submitted to thermocycling.


Introdução: com o avanço tecnológico dentro da odontologia, as resinas fotopolimerizáveis para impressão tridimensional (3D) se tornaram uma alternativa para a fabricação de dispositivos interoclusais. Objetivo: o presente trabalho teve como objetivo analisar a resistência flexural de uma resina para impressão tridimensional comparada com resinas acrílicas convencionais (quimicamente ativada e termicamente ativada), sob a influência da termociclagem. Material e método: foram confeccionados 60 corpos de prova, que foram distribuídos aleatoriamente em seis grupos experimentais (n=10), de acordo com a resina utilizada (resina acrílica ativada quimicamente, resina acrílica ativada termicamente e resina para impressão 3D) e com o tratamento recebido (controle e termociclagem). Os corpos de prova foram submetidos ao ensaio de flexão de três pontos para determinação da resistência flexural. Resultado: a análise dos dados demonstrou que o fator material (<0.0001) e o fator termociclagem (p=0.0096) influenciaram a resistência flexural, entretanto, a interação entre os dois fatores não (p=0.9728). Conclusão: deste modo podemos concluir que a resina para impressão 3D apresentou desempenho inferior às resinas acrílicas, especialmente quando submetida a termociclagem.


Subject(s)
Acrylic Resins , Occlusal Splints , Resins , Printing, Three-Dimensional , Flexural Strength
SELECTION OF CITATIONS
SEARCH DETAIL